

DPP - 4

Video Solution on Website:-

Video Solution on YouTube:-

https://youtu.be/tQX4BDTsGOQ

https://physicsaholics.com/note/notesDetalis/18

Written Solution on Website:-

https://physicsaholics.com/home/courseDetails/81

Q 1. A wheel of mass 2 kg having practically all the mass concentrated along the circumference of a circle of radius 20 cm , is rotating on its axis with an angular velocity of $100 \mathrm{rad} / \mathrm{s}$. The rotational kinetic energy of the wheel is
(a) 4 J
(b) 70 J
(c) 400 J
(d) 800 J

Q 2. Pulley is rotating \& frictionless and can be taken as solid cylinder as shown in figure. If block starts from rest and falls by distance h. Then speed of block is proportional to

(a) R
(b) $1 / \mathrm{R}$
(c) $1 / R^{2}$
(d) R^{0}

Q 3. One end of a uniform rod of length 1 and mass m is hinged at A. It is released from rest from horizontal position $A B$ as shown in figure. The force exerted by the rod on the hinge when it becomes vertical is:

(a) $\frac{3}{2} m g$
(b) $\frac{5}{2} m g$
(c) 3 mg
(d) 5 mg

PASSAGE (Q. 4 to Q.5)

An L shaped frame is free to rotate in a vertical plane about a horizontal axis passing through a smooth hinge 0 . Each side of the frame has a length L and mass m. Frame is let to fall with one side horizontal and the other vertical.

Q 4. Angular acceleration of the frame just after it is allowed to fall is
(a) $\frac{4 g}{3 L}$
(b) $\frac{9 g}{10 L}$
(c) $\frac{g}{2 L}$
(d) $\frac{3 g}{2 L}$

Q 5. With what speed the end A will strike the ground?
(a) $1.1 \sqrt{g L}$
(b) $2 \sqrt{g L}$
(c) $3.2 \sqrt{g L}$
(d) $\sqrt{g L}$

Q 6. The pulley shown in fig. has radius 20 cm and MOI $0.2 \mathrm{~kg} \mathrm{~m}^{2}$. Spring used has force constant $50 \mathrm{Nm}^{-1}$. The system is released from rest when spring was in natural length. Find the velocity of 1 kg block when it has descended 10 cm .

(a) $1 / 2 \mathrm{~ms}^{-1}$
(b) $1 / \sqrt{2} \mathrm{~ms}^{-}$
(c) $1 / \sqrt{3} \mathrm{~ms}^{-1}$
(d) none

Q 7. A uniform rod of length his free to rotate in a vertical plane about a fixed horizontal axis through O . The rod is allowed to rotate from rest from its unstable vertical position. Then the angular velocity of the rod when it has turned through an angle θ is-
(a) $\sqrt{\frac{3 g}{2}} \sin (\theta / 2)$
(b) $\sqrt{\frac{6 g}{l}} \sin (\theta / 2)$
(c) $\sqrt{\frac{3 g}{l}} \operatorname{Cos}(\theta / 2)$
(d) $\sqrt{\frac{6 g}{l}} \operatorname{Cos}(\theta / 2)$

Q 8. A rigid body is made of three identical thin rods fastened together in the form of a letter H . The body is free to rotate about a horizontal axis that passes through one of the legs of H . The body is allowed to fall from rest from a position in which the plane of the H is horizontal. Then the angular speed of the body when the plane of the H is vertical is -

(a) $\sqrt{9 g / 4 L}$
(b) $\sqrt{3 g / 4 L}$
(c) $\sqrt{3 g / L}$
(d) None of these

Q 9. A rigid equilateral triangular frame made of three identical thin rods (mass $=1 \mathrm{~kg}$ \& length $=\sqrt{3}$ meter) is free to rotate smoothly in vertical plane. Frame is hinged at one of its vertices H . Frame is released from rest from the position shown in figure. Maximum angular velocity of frame in subsequent motion is

(a) $\sqrt{\frac{g}{3}}$
(b) $\sqrt{\frac{2 g}{3}}$
(c) $\sqrt{\frac{4 g}{3}}$
(d) $\sqrt{\frac{g}{2}}$

Q 10. A particle of mass 1 kg is moying along the line $\mathrm{y}=\mathrm{x}+2$ (here, x and y are in metres) with speed $2 \mathrm{~m} / \mathrm{s}$. The magnitude of angular momentum of particle about origin is:
(a) $4 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$
(b) $2 \sqrt{2} \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$
(c) $4 \sqrt{2} \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$
(d) $2 \mathrm{gk}-\mathrm{m}^{2} / \mathrm{s}$

Answer Key

Q. 1 c	Q.2 d	Q.3 b	Q. 4 b	Q. 5 d
Q.6 a	Q. 7 b	Q. 8 a	Q.9 b	Q.10 b

